On the Pipage Rounding Algorithm for Submodular Function Maximization - a View from Discrete Convex Analysis
نویسنده
چکیده
We consider the problem of maximizing a nondecreasing submodular set function under a matroid constraint. Recently, Calinescu et al. (2007) proposed an elegant framework for the approximation of this problem, which is based on the pipage rounding technique by Ageev and Sviridenko (2004), and showed that this framework indeed yields a (1 − 1/e)-approximation algorithm for the class of submodular functions which are represented as the sum of weighted rank functions of matroids. This paper sheds a new light on this result from the viewpoint of discrete convex analysis by extending it to the class of submodular functions which are the sum of M\-concave functions. M\-concave functions are a class of discrete concave functions introduced by Murota and Shioura (1999), and contain the class of the sum of weighted rank functions as a proper subclass. Our result provides a better understanding for why the pipage rounding algorithm works for the sum of weighted rank functions. Based on the new observation, we further extend the approximation algorithm to the maximization of a nondecreasing submodular function over an integral polymatroid. This extension has an application in multi-unit combinatorial auctions.
منابع مشابه
Submodular Function Minimization and Maximization in Discrete Convex Analysis
This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...
متن کاملMonotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization: Extended Version
It is becoming increasingly evident that many machine learning problems may be reduced to some form of submodular optimization. Previous work addresses generic discrete approaches and specific relaxations. In this work, we take a generic view from a relaxation perspective. We show a relaxation formulation and simple rounding strategy that, based on the monotone closure of relaxed constraints, r...
متن کاملPolyhedral aspects of Submodularity, Convexity and Concavity
The seminal work by Edmonds [9] and Lovász [39] shows the strong connection between submodular functions and convex functions. Submodular functions have tight modular lower bounds, and a subdifferential structure [16] in a manner akin to convex functions. They also admit polynomial time algorithms for minimization and satisfy the Fenchel duality theorem [18] and the Discrete Seperation Theorem ...
متن کاملPipage Rounding, Pessimistic Estimators and Matrix Concentration
Pipage rounding is a dependent random sampling technique that has several interesting properties and diverse applications. One property that has been particularly useful is negative correlation of the resulting vector. Unfortunately negative correlation has its limitations, and there are some further desirable properties that do not seem to follow from existing techniques. In particular, recent...
متن کاملMonotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization
It is becoming increasingly evident that many machine learning problems may be reduced to submodular optimization. Previous work addresses generic discrete approaches and specific relaxations. In this work, we take a generic view from a relaxation perspective. We show a relaxation formulation and simple rounding strategy that, based on the monotone closure of relaxed constraints, reveals analog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Math., Alg. and Appl.
دوره 1 شماره
صفحات -
تاریخ انتشار 2009